Learning deep representation of multityped objects and tasks

نویسندگان

  • Truyen Tran
  • Dinh Q. Phung
  • Svetha Venkatesh
چکیده

We introduce a deep multitask architecture to integrate multityped representations of multimodal objects. This multitype exposition is less abstract than the multimodal characterization, but more machine-friendly, and thus is more precise to model. For example, an image can be described by multiple visual views, which can be in the forms of bag-of-words (counts) or color/texture histograms (real-valued). At the same time, the image may have several social tags, which are best described using a sparse binary vector. Our deep model takes as input multiple type-specific features, narrows the cross-modality semantic gaps, learns cross-type correlation, and produces a high-level homogeneous representation. At the same time, the model supports heterogeneously typed tasks. We demonstrate the capacity of the model on two applications: social image retrieval and multiple concept prediction. The deep architecture produces more compact representation, naturally integrates multiviews and multimodalities, exploits better side information, and most importantly, performs competitively against baselines.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Named Entity Recognition in Persian Text using Deep Learning

Named entities recognition is a fundamental task in the field of natural language processing. It is also known as a subset of information extraction. The process of recognizing named entities aims at finding proper nouns in the text and classifying them into predetermined classes such as names of people, organizations, and places. In this paper, we propose a named entity recognizer which benefi...

متن کامل

Detecting Overlapping Communities in Social Networks using Deep Learning

In network analysis, a community is typically considered of as a group of nodes with a great density of edges among themselves and a low density of edges relative to other network parts. Detecting a community structure is important in any network analysis task, especially for revealing patterns between specified nodes. There is a variety of approaches presented in the literature for overlapping...

متن کامل

Comparative Textbook Evaluation: Representation of Learning Objectives in Locally and Internationally Published ELT Textbooks

The present study evaluated the learning objectives represented in the recent Iranian nation-wide ELT textbooks, i.e. Prospect and Vision series, and compared them to those in the internationally-published textbook of Four Corners. To this end, Bloom’s revised taxonomy of learning objectives was utilized as the analytical framework to scrutinize the tasks and exercises of the textbooks using a ...

متن کامل

Learning Visual Feature Spaces for Robotic Manipulation with Deep Spatial Autoencoders

Reinforcement learning provides a powerful and flexible framework for automated acquisition of robotic motion skills. However, applying reinforcement learning requires a sufficiently detailed representation of the state, including the configuration of task-relevant objects. We present an approach that automates state-space construction by learning a state representation directly from camera ima...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1603.01359  شماره 

صفحات  -

تاریخ انتشار 2016